Problem 2.19

Two spheres, each of radius R and carrying uniform volume charge densities $+\rho$ and $-\rho$, respectively, are placed so that they partially overlap (Fig. 2.28). Call the vector from the positive center to the negative center d. Show that the field in the region of overlap is constant, and find its value. [Hint: Use the answer to Prob. 2.13.]

Fig. 2.28

Solution

According to Problem 2.13, the electric field around a solid ball with a uniform volume charge density ρ is

$$
\mathbf{E}=\left\{\begin{array}{ll}
\frac{\rho}{3 \epsilon_{0}} r \hat{\mathbf{r}} & \text { if } r<R \\
\frac{\rho}{3 \epsilon_{0}} \frac{R^{3}}{r^{2}} \hat{\mathbf{r}} & \text { if } r>R
\end{array}=\left\{\begin{array}{ll}
\frac{\rho}{3 \epsilon_{0}} r\left(\frac{\mathbf{r}}{r}\right) & \text { if } r<R \\
\frac{\rho}{3 \epsilon_{0}} \frac{R^{3}}{r^{2}}\left(\frac{\mathbf{r}}{r}\right) & \text { if } r>R
\end{array}= \begin{cases}\frac{\rho}{3 \epsilon_{0}} \mathbf{r} & \text { if } r<R \\
\frac{\rho}{3 \epsilon_{0}} \frac{R^{3}}{r^{3}} \mathbf{r} & \text { if } r>R\end{cases}\right.\right.
$$

where \mathbf{r} is the position vector from the ball's center to the point where we want to know the electric field. In the region of overlap the $r<R$ condition applies for both the positive ball and the negative ball.

The electric field at \mathbf{r} due to the positive and negative balls alone are respectively

$$
\mathbf{E}_{+}=\frac{+\rho}{3 \epsilon_{0}} \mathbf{r} \quad \text { and } \quad \mathbf{E}_{-}=\frac{-\rho}{3 \epsilon_{0}}(\mathbf{r}-\mathbf{d}) .
$$

$\mathbf{r}-\mathbf{d}$ has the same magnitude as $\mathbf{d}-\mathbf{r}$ but points toward the point of interest.

By the principle of superposition, the total electric field at \mathbf{r} is the vector sum of these fields.

$$
\begin{aligned}
\mathbf{E} & =\mathbf{E}_{+}+\mathbf{E}_{-} \\
& =\frac{+\rho}{3 \epsilon_{0}} \mathbf{r}+\frac{-\rho}{3 \epsilon_{0}}(\mathbf{r}-\mathbf{d}) \\
& =\frac{\rho}{3 \epsilon_{0}} \mathbf{r}-\frac{\rho}{3 \epsilon_{0}} \mathbf{r}+\frac{\rho}{3 \epsilon_{0}} \mathbf{d}
\end{aligned}
$$

Therefore, in the region of overlap,

$$
\mathbf{E}=\frac{\rho}{3 \epsilon_{0}} \mathbf{d}
$$

which is constant.

